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SUMMARY

An spproximate method, based on large-deflection plate theory, for
calculsting the deflections of flat or initially imperfect plates sub-
Ject to thermsl buckling is outlined. The method is used to determine
the deflections of a simply supported psnel subjected to a tentlike
temperature distribution over the plate surface. Experimental results
for a particular panel are in good agreement with the theoretical
results for the range of temperatures and deflections considered in
the test.

INTRODUCTION

In supersonic aircraft, deflections of plate elements out of the
plane of the plate may be caused by aerodynamic heating. Deflections
may occur without thermal stresses appearing if the plate is unre-
strained and if the temperature distribution is linear throughout the
volume of the plate. If the plate is restrained or if the temperature
distribution is nonlinear, however, thermal stresses are induced.
Deflections of the plate occur at the beginning of heating if the tem-
perature varies throughout the plate thickness but do not appear until
a critical temperature is reached if the temperature is constant
throughout the plate thicknesa. This last type of distortion is an
example of buckling of a flat plate by middle-surface forces that vary
throughout the plate and is the subject of the analysis of the present
paper.

Since buckling of serodynamic surfaces may have an adverse effect
on alrcraft performance, the temperature distributions for which buck-
ling will occur should be known. In many cases it may not be feasible
to design & structure which will not buckle and for these cases the
magnitude of the distortions should be known in order that their effect
on gircraft performance may be estimated.

For initially flat plates, solution of the Von Kﬁ}méh large-
deflection equations for plate buckling, modified to take into account
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the effect of thermal stresses, 1ls required for the determination of
the buckle magnitude. A procedure for the approximate solution of these
equations is outlined in the present paper and is illustrated by the
determination of the buckle magnitude of a simply supported plate that
is subjected to a tentlike temperature distribution. This temperature
distribution was chosen because 1t was easily obtained experimentally.
An approximate method for readily extending the results for initially
flat plates to plates with initisl Imperfections is also presented.

The effects of plasticity and of variations in material propertles due
to temperature are excluded from the analysis.

The over-all validity of the assumptions made in the present analy-
sis 1s tested by experimentally determining the variation with tempera-
ture of the deflections of an inltially imperfect plate subjected to a
tentlike temperature distribution and comparing these experimental
results with the theory.

SYMBOLS
a half-plate length in x-direction
amn coefficlents in series expansion for plate deflection
b half-plate width in y-direction

€15Cpy++Cyq coefficients in stress function Fj

: Et3
D plate flexursl stiffness, ————
12(1 - p2)
E*%3
D* transformed plate flexural stiffness, -——e————
12(1 - p2)
E Young's modulus of plate matéerial
Wi,
E* transformed Young's modulus of plate material, E{l -
¥e
F stress function defining stress distribution in plate,
F=Fy+ F1

Fo stress function defining thermsl stresses in unbuckled plate
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Fy

t*

m,n,p,q

T

Wi

LE

¥s

X,y

b2EaT gt
)

b2EaT0crt
7D

a/b

stress function defining stresses due to stretching of
plate middle surface during bending

plate thickness

Wi
transformed plate thickness, t/ 1+ GJE
c
integers
temperature distribution in plate
temperature differential, difference between center and
edge temperatures in a tentlike temperature distribu-
tion (see fig. 2)

critical value of TO

uniform edge temperature (see fig. 2)

potential energy of an initially flat buckled plate
plate deflection

initial deflection

initial deflection at plate center

center deflection

plate deflection shape given by small-deflection theory

coordinate axes (see fig. 1)

temperature-differential parameter

critical-temperature~-differential parameter

plate aspect ratio

coefficient of thermal expansion



L NACA TN 2771

o* trensformed coefficient of thermal expansion, = 5
1 - e
2
Ve
Yxy shear strain in plane of plate
Exs€y normal strains in plane of plate in x- and y-directions,
regpectively
1l Poigson's ratio of plate material
Oxs Oy normal stresses in plane of plate in x- and y~directions,
respectively, positive for tension
Txy shear stress in plane of plate
ch,cyO,TxyO thermal stresses in unbuckled plate
2 2
ve differential operator, e + é——
x°  dy°
L b 3k 3k
v differential operator, — +

ANALYSIS

Statement of Problem

The studies of thermal buckling presented herein are made for the
panel shown in figure 1. The panel is heated along the longitudinal
center line by a uniform line source of heat and cooled along the edges
by two uniform and equal line sinks of heat. This arrangement supplies
temperatures in the plate which are constant through the thickness and
distributed in a tentlike manner over the faces as shown in figure 2.
All edges of the panel are restrained in a direction normal to the plane
of the plate by simple rigid supports but are free to slide in the plane
of the plate.

The investigation is made in ateps corresponding to the stages _
through which an initially flat plate passes as temperature is gradually
increased. First the thermal stresses at temperatures below the critical
are determined; next the critical temperature is found; and then the
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behavior of the plate at temperatures asbove the critical is obtained.
The effects of initial imperfections throughout the entire temperature
range are considered in a concluding step.

The procedure is presented in the succeeding s=ctions together
with pertinent results of the mathematical study, the details of which
are given in appendixes. Specific numerical results are given for a
panel with aspect ratio a/b equal to 1.57 which is the aspect ratio
of the panel described in the section entitled "Experimental Results."”

Thermal Stresses in the Unbuckled Plste

Details of the calculation and experimental verification of the
thermal stresses in the unbuckled panel are given in reference 1. The
calculations of reference 1 employ the first-order approximation that
on any cross section normal to the x-axis the stress oy is distributed

as shown in figure 3. The thermal-stress function Fp can then be

expressed as the product of & known function of y and an arbitrary
function of x. The principle of minimum complementary energy is then
used to determine an ordinary linear fourth-order differential equation
for the function of x. The resulting approximate expression for Fo
is

_ L2 232 2 L)(py sinn Ry X x
Fg = 15 b EaTo<§ 3 -2 + 2 3 By sinh Ry a sin Ro a

A
ed

UA
e

Bo cosh Ry § cos Ro % + %) (v (1)

where Bj, Bp, Ry, and R, are defined in sppendix A.

The stress distribution in the plate is given by

= Ea.TOG)X - %)631 sinh R; % sin Ro E + Bp cosh Ry f cos Rp 3:; + l)

(2a)
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BQFO
O, = ——-
R
= = EaT~{l - 3 XE + 2 XE D7 sinh R x gin Ro X +
- 1270 b2 p3/\ T la 2a
Dy cosh Ry -E cos Ro %) (2b)
2
. _ 0°Fy
X¥a
0 ox dy

1 ALY X X X X
=3 Ewro(l - E)ECD3 sinh Ry 3 o8 R2'§ + D)y cosh Ry a sin Ro E)
(bgyso) (2c)

where Di, Do, D3, and D are defined in appendix A. The stresses in
the region -b Sy £ 0 are identical with those given by equations (2).

The stresses thus are a function of the temperature differential T,
for the tentlike temperature distribution and are independent of the
edge temperature T;.

Critical Temperature Differential

As the temperature differential T, of the heated plate increases,
a value Tocr is reached at which the plate buckles under the action of

the induced thermal stresses. If only small deflections of the buckled
plate are considered, the assumptions can be made that the middle sur-
face of the plate does not stretch and hence that the stress distribu-
tion in the plate does not change after the onset of buckling. The -
stress distribution then is given by equations (1) and {2). The deflec-
tion of the buckled plate is governed by the differential equation

(ref. 2)
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azw Q2w 32w
W""w <x0 axz yO gy; + 2Txy0 _ax ay) (3)

and the critical temperature differential may be found by methods
appropriate for the investigation of the stability of flat plates with
internally varying stresses.

One such method is the Rayleigh-Ritz energy method which employs
the principle of minimum potential energy (see ref. 2). For the present
problem a buckle pattern symmetrical sbout the center of the plate is
chosen as

-]
w = E Z &y CO8 I—;—;E cos ;—.:'Y— ()'[')

which, together with equations (2), is substituted into the potential-
energy expression (ref. 2) to yield

b 2. N2
v =2 2w)2 - 2(1 - oW O%w ) dx d
5 J[; JC: \y (1 - 2 02 \ax o3 Y+

b 2 2
t ow ow oW ow
- -~ == 2 dx 4
2 J[; JCj 'UXO(BX) v be(ay> TET Y0 3x oy = 2

Equation (5) i1s then minimized with respect to the unknown coeffi-
cients ap,. This procedure leads to a set of simultaneous equations

which constitute a characteristic-value problem, the solutions of which
give sets of relative values of the coefficients ap, and assoclated

values of the critical temperature. The simultaneous equations are

Kpqg®p :; :g pqunimn
bEEamo g TO a” m=1,3,5 n=1,3,5

n2D

1, 3, 5, « « o3

(p
l’ 3) 5,‘ . ') (6)

q

Equations for the coefficients qu and qumn are given in sppendix A.
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One method of solving equations (6) is a matrix iteration process
which 1is described in reference 3. The lowest critical temperature
coefficient thus obtained for a panel with aspect ratio of 1.57 is

boEaTq_t

—112])—_ 5.39 (7)

Since E appears in both the numerator and denominator (in D) of the
critical-temperature-differential parameter, the critical itemperature
differential is independent of Young's modulus E.

The approximate buckle pattern associated with this critical tem-
perature is given by the equation

W
= —C—-Gos X cos X + 0.0365 cos ZX cos 3—7W+

T 1.1767 2a 2b 2a 2b
0.1360 cos 3™ o5 & 40,0042 cos 3= o8 25%) (8)
28, 2b 28, . 2b

in which w, is the deflection at the center of the plate and % = 1.57.

A pictorial representation of equation (8) for one quarter of the plate
is shown in figure k.

Post-Buckling Behavior

In order thet the post-buckling behavior of the heated plate may
be .obtained, stretching of the plate middle surface due to bending must
be taken into account. Because of this stretching, the stresses in the
plate change as the plate deflects and are determined by the equations

hF B2 82w BEW 32w
v Ba¥2T + B(<S ay g > (9)

2
_OF (108)
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2
5. = O°F . (10b)

T, = {10c)

X7 7 d3x oy

in conjunction with the condition that the boundaries are stress free.
The stress function is also related to the deflections by the equation
of equilibrium

Dty - tfO°F 3w OF 3w, 3%F

(11)
dy° 3x2  dx° oy dx dy 9x Jy,

so that equations (9) and (11) must be solved simultaneously.

Equations (9) and (11) are the Von Kermén equations (ref. 2) for
large deflections of a plate, modified for the effects of thermal
expansion (see appendix B). Exact solutions of these equations are in
general difficult to obtein, and spproximate methods of solution must
be used. A procedure using the Galerkin method (ref. 4) is used in
the present paper.

The stress function F is obtained as the sum of two parts
F=Fg+Fy (12)

The stress function FO is the thermal-stress function for the unbuckled
plate which satisfies the equation

V.= ~Eav2T (13)
and the boundary conditions on stresses. This solution is given by

equation (l). The stress function Fj is the solution (satisfying
the boundary conditions on stresses) of ths equation

.2 \2 a2 o

b O°W 0w W

\% =E < ) - (1h)
! ox Oy, Bx2_ay2

in which w is the buckle pattern given by equation (4). An approximate
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solution for Fj is obtained by the Galerkin method as set forth in .
reference 4. The stress function F; is chosen as the sum of a series

of functions for which the boundary stresses vanish, suggested in
reference 5 asg

Fi = (22 - a2)%(y2 - 12)%(cy + cpx@ + cgy2 + . . L) (15)

The coefficients cj, Cp, €3, . . . &re found in terms of the coeffi-~

cients ay, by the equations

fafbiﬁ‘_l. \vais -E<62W 2'-82'“52“ dx dy = O
adpoes| * X/ 32 3P

(1i=1,2,3,...) (16)

The resulting stress function F is substituted into eguation (11).
The Galerkin method may again be used to determine the values of the
coefficients ap, of the deflection function w. A set of simultaneous

equations is obtained

a b o)
max nnyfD _k_ O°F 3w  O°F °w i
u/:af_bcosgcos—<ng-ay28x2-ax28y2+

2. a2
s OF ﬂ-)dxdy=o (m

— 1 .
3% o7 3% 53 335 25

Ul an

which can be solved for values of the coefficients amn.

Equations (17) are nonlinear and their solution becomes difficult
if many terms are retained in the deflection function. Experience has
shown that very good results may be obtained if the shape of the
deflected surface of the plate for large deflections is taken as the
one existing at the critical temperature - that is, only the coeffi-
cient aj; is left arbitrary and the ratios amn/all are assumed to be

those given by the small-deflection solution previously described. «
The Galerkin equation from which the coefficient aj; can be determined
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then becomes

a pb 2
f f Wg(%vh"s - 34F aews - F azws + 2 oF aaws )dx dy = 0 (18)
-av.-p dy° 2 ax? d¥y° dx dy dx dy,

where

= amn n
wg = E ; =77 °°8 :ﬁx cos ggy (19)
n=1,3,5 n=1,3,5 a

and the values of amn/all obtained from the small-deflection solution
are also substituted into the stress function F. This procedure yields
a relationship between the coefficlent aj;7 and the temperature dif-
ferential Tgy. For a plate of aspect ratio a/b equal to 1.57, the
relationship found in this manner is. shown in appendix C to be

2
b EaTOt

2
——- 5.39 + 1.12(1 - ue):% (20)

where w. 18 the plate-center deflection and is equal to 1.1767311.

It can be seen that the plate deflections are independent of Young's
modulus E, since E appears in both the numerator and denominator
of the temperature-differentiasl psrameter.

Effect of Initial Imperfections

Since actual plates are not usually flat, initial imperfections
should be taken into account in the previously developed analysis.
The anelysis of the thermal bucklin 9; initially imperfect plates
involves the solution of the Von Kdrman large-deflection equations
for initially imperfect plates modified for the effects of nonuniform
temperature distributions (appendix B):

2. \2 2. \2 .
v - -Eaver + B[220 s awl) , Py Py (21)
dx dy 3x2 dy°  \dx dy, xx2 ¥y
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(22)
t dy2 3x2  dx2 dye ox dy ox Jdy

The solution of these equations could be effected in much the same
manner as was done for the equations for flat plates. The outlined
process, however, is tedious, and an approximate method for assessing
the effect of initisel imperfections would be more advantageous. Such
a method is developed in appendix D.

In order to analyze an initially imperfect plate, a flat plate
having the same sspect ratic is first analyzed, the gquantities E, «,
and t being left arbitrary. Then everywhere in the resulting expres-

2
Wi
sions, E 1is replaced by E(l- ;), a by —-—G‘T—E, and t by
ic
1 - =S

We
Ve

% This relatively simple procedure yields the stresses and

Wi
Vl + =<

We
deflections of an initially imperfect plate.

For the problem of thermal buckling of a flat, simply supported
plate of aspect ratio 1.57, subJected to a tentlike temperature dis-
tribution, the relationship between the temperature differential Ty
and the center deflection of the plate w. has been found to be

b2EaT 5t

2
= 5.39 + 1.12(1 - uE)H%— (23)
n=D t

When o and t (note that t also appears in D) are replaced by

& 5 end —L% —  (no substitution need be made for E since
1 - e 14 e
Wcz Ve

the relationship is independent of E) the resulting equation may be
written as

b2EaT ot ( wic) 5 we? - Vic2
—_— = 5, - =¢ 1.12(1 - —_— 2h
5 = 5391 - 52) + 23201 - ) S (24)
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which is the relationship between the temperature differential and the
plate-center deflection for en initially imperfect plate.

This method of analysis may be expected to be fairly accurate for
plates for which the initial deflected shape is similar to the shape
of the first buckling mode of the corresponding flat plate. If the
first buckling mode does not predominate in the initisl deflected shape,
no recourse appears possible except to solve equations (21) and (22)
for the large deflections of an initially deflected plate.

EXPERTMENTAL RESULTS

In order to check the applicability of the theoretical analysis to
actual plates, the deflections of a simply supported rectangular plate
subjected to a tentlike temperature distribution were obtained experi-
mentally and were compared with the theoretical results. The panel
was tested under conditions which gave virtually complete boundary
freedom in the plane of the plate and simple support.

A plate (see fig. 5) having an over-all length of 36 inches, an
over-all width of 24 inches, and a thickness of 0.25 inch was used;
this plate is similar to the panel of reference 1. The length and
width between simple supports were 35.25 inches and 22,50 inches,
regpectively, which correspond to the plate aspect ratio of 1.57 used
in the numerical calculations previously reported. The coefficient of
thermal expansion o and Poisson's ratio i for the 758-T6 saluminum-

alloy plate material were 0.127 X lO'h Ei243§ and 0.33, respectively,

for the range of temperatures of the test. The plate was initially
imperfect and had a center deflection of 0.045 inch.

The arrangement and operation of the heat source and sinks are
the same as for the panel of reference 1. Deflections of the plate
along the longitudinal and transverse center lines of the sheet were
measured by diel gages. These deflections are the difference between
the total deflections and the initiel deflections of the plate.

Figure 6 shows the experimental and theoretical plate-center
deflections w, - Wi plotted as & function of the temperature dif-

ferential Tp. The theoretical curve is given by equation (24) with
K, @, t, b, and Vi, replaced by thelr respective values. With

= 0.127 x 10-% An-_
o 27 X 10 1. .07
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d.
n

0.25 in.

o’
I

11.25 in.

Wi, = 0.045 in.

and
H=0.33

equation (24) becomes

Tg = l9h.1<} - Oéoué) + 573.6[§;2 - (0.0#5)§] (25)

C

where Ty 1s in degrees Fahrenheit and w. is in inches. Figure 6

shows that good agreement exists between theory and experiment for the
range of temperatures and deflections considered in the test.

Also shown in figure 6 is the theoretical variation of center
deflection with temperature for an initially flat plate (Vic = 0).
The additional deflection caused by initial imperfections of the plate
can be seen to be appreciable.

The deflectlons measured along the longitudinal and transverse
center lines of the plate for various values of the temperature dif-
ferential Ty are shown in figure 7. The theoretical deflectlons
calculated for the same values of Ty are also shown in the flgure,
Although the measured and calculated initial deflection shapes (Tg = ° F)
are not in very good egreement, the measured and calculated deflection
shapes tend to come Into closer agreement as the temperature differential
becomes larger and thus tend to fulfill the aessumption of the theoretical
enalysis that the plate deflections have the same shape as the shape of
the first mode of buckling of the corresponding flat plate.

CONCLUDING REMARKS

Good agreement exists between experimentally determined center
deflections of an initially imperfect panel subJected to a tentlike
temperature distribution and the center deflections calculated from
an approximate solution of the large-deflection equations for an
initially imperfect plate. Other cases of thermal bending or buckling
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of plates can very likely be calculated with good accuracy by the

methods developed in the present paper if the temperature distribution
and initisl Imperfections of the plate are known.

Langley Aeronautical Laborstory
National Advisory Committee for Aeronautics
Langley Field, Va., May 12, 1952



16 o NACA TN 2771

APPENDIX A
BQUATIONS FOR CRITICAL TEMPERATURE AND BUCKLE PATTERN

The equations for the critical temperature and buckle pattern for
symmetrical buckling of the panel subjected to the particular tempera-
ture distribution considered herein are as follows (egs. (6)):

[s.] o]

— >
+ =0
b2EaT0crt Kﬁqapq m;;%;,5 n=1,3,5 qumnamn
72D

1, 3, 5, . &

(p .3
1, 3, 5, . « «) (AL)

q

The coefficients Kﬁq and K@qmn are defined as follows:

2

Kpq = E(Pz =+ %El (A2)
Kpgmn = P EAnq(Blep + Bopp + Fmp) + anq(D3Gmp + DhHmpﬂ +
qEqu(DlImP + Dngp) + mBqn(D3Gpm + DllHPm):] (A3)

The constants in equation (A3) that apply also in the formulas for
direct thermel stress (egs. (1) and (2)) are given by

kl gsinh Rl cos8 RQ - k2 cosh Rl sin RE

By (Aka)

kl sin RQ cos R2 + ke sinh Rl cosh R2

k- cosh R, sin R, - ginh Rq cos R
By =- - 1 2 - k& 1 2 (Akb)

kl sin Rg cos R2 + k2 sinh Rl cosh Rl
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(=)
=
Il

I\JU
|

D3

Dy

where

Bl(?12 - k22) - 2Bk ko

= Ba(?lz - ke?) + 2Bk

Bikp + Boky

Biky - Bokp

Rl =k

o'|p

o'|m

Rp = kp

_ 4[5 \/E_T_
kl = 13 1l + 65
- HQ‘A l/i
k2 13 65

The other coefficients are

b 1
Anq = f <% - -2-)008
0
Anq = =- 1 5
n-a
( 5 “)
1
Anq = =-

-
oy cos any dz
2b 2b b
. n-g .
if ' > is odd >
n -
if q‘ is even or zero
-

17

(Ahc)

(Akd)

(Ake)

(Akr)

(A5a)
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Bnq =

q

n-4q

QY 4 ¥
op b
odd

even or zZero

>

is zero

NACA TN 2771

(A5b)
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a
- . R X X js OIX . DPIX X
Dip L sinh Ry .y sin Ro s 810 55— sin 5= da

2P

(-1) 2 Ecl + Cp + C3 + Cy)sinh Ry cos Ry - (C5 + Cg +

Cq + Cg)cosh Ry sin Ra (A54d)
Epp = J: cosh Ry f cos Ro § sin E;E sin ngc df
m-p
= (-1) 2 EC]_ +Cp + C3 + Cy)cosh Ry sin Ry + (C5 + Cg +
C; + Cg)sinh Ry cos Re:l (A5e)
-_—
a mx jokio- < x
Fmp =\_/\O 81ln -2_8._ gin E dg
m-p s (A51)
Fpp = 0 if ‘ £0
1 m - pl
F == 1if =0
a X X 1[04 X
— — — m— il ——
G _b/; sinh Ry Z cos Rp 3 cos 5a 810 5 a%

=(-1) 2 }(Cy - Cp + C3 - C_h)sinh Ry cos Ry, - (C5 - Cg +

Gy - Cg)cosh Ry sin RE] (ASg)
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g

- x X cos =2£ cos B gX
/: costha sin Ry = cos 5a °°° o a3

w-p
(-1) 2 [01 - Cp + C3 - Cy)cosh Ry sin Ry + (C5 - Cg +

C; - Cg)sinh Ry cos 32] (A5h)

a
. X X mix PIX . x
j; sinh Rj g sin Ro g C08 5— cos - g

i
(-1) 2 |(Cy + €5 - C3 -~ Cy)sinh Ry cos Ry - (C5 + Cg -

Cy - Cg)cosh Ry sin 32] (A51)

cq
5
1

cosh R ¥ cos Ro X cos B cog 2EX gX
_/: la 2a ™" 2a 28 &

m-p

% +1
(-1) EC]_ + Cp = C3 - Cy)cosh Ry sin Ry + (C5 + Cg -

Cy - Cglsinh Ry cos RQJ (459)

where

m+ P
Re+__2_n
Cy =

i
4 2
ng + <R2 + m__T_+ P :r)
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Vg
N

m+ P

2l
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If only the terms a4, 8135 831, and a3y are retained in the

deflection function (eq. (4)), equations (Al) may be written in matrix
form, for a plate having an aspect ratio of 1.57, as

(15,73 22,52 1h.88  -5.96] (ayy) (a11 ]
0.50k 1.426 0.871 0.377) ja a
1 1
<135 =_2LO‘L_ﬁ 35 e)
1.35 3.5k 7.42 7.69 | |as1 p%Ealo, | agy
2
-0.0 0.208 1.0k 0.4 =D a
075 s o] o o5
2FaTy  t
The solution for the largest value of 100 ___;E_EE—’ and hence for the
b2EaTq _t D
smallest value of ———;5—93-, is obtained from matrix iteration (ref. 3)
D
of equation (A6). The critical-temperature parameter so obtained is
bRl b
'—?D———=5-39 (A7)

The relative values of the four coefficients retained in the deflection
function are found to be

7~ N
{éliW 1
QM3 7 (48)
233 0.1360
h-8.3% B.OO’-&E_‘
in which case the deflection function may be written as
W = all<%os gz cos %% + 0,0365 cos gg cos %%Z + 0.1360 cos %gi cos %% +
3mx Y
0.0042 cos S COS 5p , (A9)
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The deflection at the center of the plate is l.l767a11. Let this
quantity be denoted by we; then

w=—C_ f(oog XX cos 4 0.0365 cos == cos ézz_+
1.1767 2a 2b 2a b
0.1360 cos 3= cos & + 0.002 cos 3= cos §EZ) (A10)
28, 2b 2a Zb

which is the form of the deflection function presented as equation (8).

The choice of the particular coefficients ajj, a33, 8331, and 833

depends on the fact that these are the most important coefficients in
the series for the deflection w (eq. (4)). The following table shows
the convergence of the critical-temperature parameter as more terms are
taken in the deflection function:

bPETg _t

Terms retained — cr
7eD
811 6.35
all, 8.31 5. 65
&ll, 8.31, 8.13 5.}4-0
811, 831, 813, 833 5.39

The retention of terms other than the four chosen has a negligible
effect on the critical temperature and on the buckle pattern.
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APPENDIX B

/s
MODIFICATION OF VON KARMAN LARGE-DEFLECTION EQUATIONS

FOR EFFECTS OF THERMAL EXPANSION
The condition of compatibility of strains for a deflected plate

with initial imperfections is represented by the following equation
(see refs. 2 and 6):

(B1)

Pex | Pex  Pray _ < 32w N2 3w R [Py >2 , Pus Py
dy2 ox2 ox dy x Oy dx2 Jdy2 ox Ay ox2 9Jy2

When heat is applied to & plate, strains ¢y, €ys and Yxy @are

caused by thermal expansion of the material as well as by stresses that
may arise from various sources. The stralns are given by

€ = %(Gx - ucy) + aT

ey %(ay - poy) + ol > (B2)

2(1 + b))
7xy=_E— Xy

-

With the introduction of a stress function F defined by

2 b

o’x = éi

3y?

d°F >
Oy = —— (B3)
v 3x2

_
xy 3x dy |
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the strains are given by
—_

Ex—é?iu%i%)-*ﬂ

€=l_2£_p&. + T (B)-I-)
J E@xg ayz ?
oo = 2(1 + p) °F

- " E ox Oy

Substitution of equations (B4) into equation (Bl) gives the compatibility
condition in the form

2 2
V4P = -EavPT + E i"-) _ Pw Pw | (azwi , O By (B5)
ox 9y, 32 dy2 ox oy, a2 dy2

This is the first of the Von Ké;méﬁ equations, modified for effects of
thermal expansion. The stresses derived from the stress function F
satisfy equilibrium in the plane of the plate because F, as defined by
equations (B3), identically satisfies the equilibrium equations

EEE + aTxy =0
ox dy
> (36)
-&& + aTxy =0
oy ox

-’

The second Von Karman equation, the equation of equilibrium of forces
normal to the plate middle surface, remains unchanged as

o - wy) = <B2F Py , P 2 _ , B _a_2w_> (B7)
5y2 3x2  ax2 dy2 dx Oy ox 9y,



APPENDIX C

raw4
APPROXIMATE SQLUTION OF THE VON KARMAR LARGE-DEFLECTION EQUATICNS
Determination of the Stress Distrlbution in the Plate

;S 7
The first Von Karman equation for flat plates relates the stress distribution in the plate
to the plate deflection w as follows:

% ¥ 3%y a2
VI*F=-Edv2T+EKaxay> _aﬁayﬂ (c1)

The stress functlon F can be separated into two parts, the primary stress function Fj, which
saetisflies the equation

Yy = -Eav2T (c2)
and 18 given by equation (1) for the present problem, and a stress function F;, which satlsfles
the equation

vhnﬂ(a"’;’)e-aa"a?“ (©3)
ox ax2 3y2

and the given condition of stress-free edges. For the buckle pattern given by equation (L),
equation (C3) becomes

o0
VhFl = E :;: g E §E %& %g-amnapq gg-%% sin ggi gin ggﬁ-sin %%X-Bin %Ez -
m=1,3,5 n=1,3,5 p=1,3,5 ¢=1,3,5

D % op B oog P o B o I {ch)
2a 2b 2a 2a 2b 2b

9e

TLL2 NI VOVN




Equation (C4) may be solved approximately by the Galerkin method. A solution for Fy 1is
taken as

-]

i=1

1L.2 NI VOVN

Each function fy 18 a function of x and y that ylelds stresses which satisfy the given
boundary conditions. The arbitrary coefficlents ci are then obtained from the equatlons

e b I a b
S oo [y aa-[ [ tenn e (5=1,2,3...) (6
1=1 «8 “=h -8~ =b

where G(x,y) denotes the terms on the right side of equation (Ck).
For the present problem the boundary conditions to be satisfied are those of stress-free

edges of the plate. Furthermore, the stress distribution is symmetrical about the x- and y-axes.
A peries for Fjy that satisfies these conditions 1s suggested In reference 5 as

2 2
Fp = (x2 - a®)"(y% - b2)"(c1 + cox”® + C332 0. .) (cT)
In the present solution only the first three terms of the series are considered.

The substitutlion of equation (C7) into equations (C6) yields the following equations for
the determination of the coefficients Cy5 Cp, and c3:

a2 &\ og 7 e\ yg 7 .88 og 11025 |16/, 2 2)
TQ+','7".b—2'+;E)BbC]_+(1+ll;’IBLFbCE+ ﬁ+;ﬁabc3=-§§7‘{§3—E_§_@1]— +a33 +
66 24 g2 (la .5_1‘6) 4 (198 | 63 _ 62
J_|_5 8.13 &31 ) + 5 + ﬁ’-l- (8.13 + 3.31) B.ll + 5 ﬂll- (313 + &31)&33 ’{h 8.11333 +

186
.—ll-a 8.13&31 + . . J (CB&)
T

L2




n
7 &N o g b a2 T &\ )¢ a o8 11025 _|/176 48\ o @
(1+'1'I;E)&2bcl+3é+§§¥ lh3—Eahb02+l—l+b—u-labc3——32768E 5 --I-t—al+

13616 u32 2 272 16 o 12 1701 _ 17010
(315 2130 5-277:2&31 ¥ “'_9'%3 BT TR T SRt
36 _ %0, 1701 _3Wh25\ 486 6075 . (9582 _ 60750>a . 32k 810 .
' (5 2 eﬂ6> BBLT\FE b B\ E T SIETG T2
189 3825 108 189 210 :]
—_ - == Bnq + 77822 +F « .+ . C8b
ST K = (35 T £ /°31°33 (c8b)

= i a2 e, _ 105 _[A76 18\
(ll + Eb c, + 1+ —E)aub Co + 3(—1'.—' 33 b2 bu)&eb 3 = - 32768 EK35 - -;[-2->all +

2re | 6\, 2+(l3616 133, 322 + 1_7§._}§._ L (36 _ %0, 1701 3kkas\
105 o7 315 2 35 3.3/ 3 5 2 B o6 ) L3

B A6 & 2.6, s

108 1 210 ok 810 189 3825
G- Do (8- 55 -2,(6)&31&33“-] e

12 . 1701 17010 486 6075 8 _ 60750

TLL2 NL YOVN
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The assumption is now made that the buckled shape of the plate does
not change as the deflections increase, in which case relative values
of the coefficients app for large deflections are the same as those
at the critical temperature. For the plate of aspect ratio a/b equal
to 1.57, these relative values are given by equation (A8). Only the
coefficients ajj, aj3, 2833, and a3z are considered. The solutions

of equations (C8) are then

2'-\
cy = -0.01337 :gl
b
Eaq,2
_ Eayy©
cp = 00068 —1L > (c9)
Bao 2
c; = 0.00389 —=-
p10

The stress function for stresses due to stretching of the middle
surface of a plate with aspect ratio 1.57 is therefore given approxi-
mately by

2 2 2
o \[x2 2| (2 x2
Fi = E = - (1. - -0.01 0.00685 =
1 (1. 1767> l} ( 57):| (b2 ) ( 337 + 55t

0.00389 %) (157 S E< 1575
b
J
-1sig 1) (c10)

where w. 1s the plate-center deflection and is equal to 1.1767all.
The stress function F is given by the sum of equations (1) and (C10).

Determination of Relationship Between Temperature
and Center Deflection

With the stress distribution in the plate knoyn gs a function of
the plate-center deflection w,, the second Von Karman large-deflection
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equation for flat plates can be solved to determine the relationshlp
between temperature and deflection for temperstures above the critical.
Equation (BT) can be satisfied only on an average over the plate when
the buckle pattern for temperatures above critical is assumed to have
the same shape as at the critical temperature. Use of the Galerkin
method (ref. L4) for this averaging process gives the following equation
governing the relation between temperature and center deflection:

b 2 2 2
Jfa Jf ws<%‘vhw3 (P Py FF g O aewsé)dx Gy -0 (C11)
-a Yob dy2 3x2 3x2 dy2 ox Jy ox O

where

wg = E Bun o ggz cos - (c12)

w=1,3,5 n=l,3,5 811 2b

and the values of &mn/all are given by the small-deflectlon solution
of appendix A.

For the plate of aspect ratio &a/b equal to 1.57,

_ = Ty 3y 3nx Ty
Wg = cOs = COS = + 0.0365 cos E_ cos I + 0.1360 cos 5o C08 m +
3 37y cl
0.0042 cos 5 cos = (c13)

end the stress function F 1s glven by the sum of equations (1) and
(C10). Equation (C1l) then yields the following relationship between
the temperature Ty and the center deflection we:

2
b2EQT ~t 2
0 _5.39 + 1.12(1 - p2)¥c" (C1k)

7D £2
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The deflection at any other point of the plate with stress-free edges
end of aspect ratio a/b equal to 1.57 is given by

PEaT ot
B 0¥
X =0.723 W, (c15)
S
® 1.12(1 - p2)

where wg is given by equation (C13).
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APPENDIX D
CORRECTION FOR INITIAL IMPERFECTIONS

The large-deflection equations for bending of an initially imper-
fect plate subjected to thermal stresses are derived in appendix B as

2 2 2 2. 2 2
V}"F=-Ea,V2T+E<aW> _awaw_<a2wi> +32Viazwi (Dla)
ox Jy, 3x2 dy2 ox oy, 3x2 dy2

o0 N2 2
=82F82w+BFaw 5 O°F 3% (D1b)

%VL(W - Wi) . -
dy2 3x°  x2 dy? ox Oy ox Oy

The assumption is made that the bending deflections of the plate are
nerely a magnification of the initial deflections wji; that is, the
deflections w have the same shape as the initial deflections LI
This essumption may bes written as

=
[

e | C (m2)

w

b3
0

The substitution of equation (D2) into equations (D1) yields

2
T = _EaPT 4 EQ’ - wic2> 82w> _ 2w v (D3a)
We2 ox dy, 32 3y2
2(1 - E—)vl*w _ PP P, % P (03b)
t Ve 0y2 dx2  Ox° Jy? dx dy Ox oy
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- If the following substitutions are msde:

—
2
. e - w1 - Vie )
wel
o
X = Wi 2 ? (Dk)
1 -
W2
L —
wi
Lt
equations (D3) become
3% ¥ 32w 32
WF = -Exa*2T + E* - == (D5a)
ox dy/- ox2 dy2

D u _ PF P PR Pw  , PR P

-2 — = (D5b)
t* dy2 dx2  3x2 dy2 dx Oy ox dy

Equations (D5) are identical with the large-deflection equations for
buckling of a flat plate with Young's modulus E¥, coefficient of

thermal expansion ao*, and thickness +t*. If the Initial deflections w;

are assumed to satisfy the same homogeneous boundary conditlons as
would be satisfied by the deflectioms of an initially flat plate, the
solution of equations (D5) is identical with the solution for the
deflections of g flat plate having the same aspect ratio but with E
replaced by E¥, o by a¥, and t by ©t¥*.

As an example of this method of correction, consider the relastion-
ship between the temperature and the center deflection for the plate
of aspect ratio 1.57

b2EaT gt

2
_ _ y2yie”
= " 5.39 + 1.12(1 - p )t2 (D6)
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To find the corresponding relationship for a plate with aspect ratio 1.57
but having initial deéflections of the same shape as the initial buckling

deflections of the flat plate, o 1s replaced by a¥* or _LWT

1-
Wwel
ic
and t (note that t also appears in D) by t* or +t/[f1 + -
c

(E need not be replaced by E* since the relationship is independent
of E.) Equation (D6) then becomes

beEdTOt Vi, Wel - wi 2
—_ = - —c ] TY-2 W
5 5-39<} o ) + 1.12(1 - p<) 3 (D7)

In order that the velidity of the foregoing method of analyzing
plates with Initial deflections be checked, the method was used to
calculate curves of center deflection plotted against average edge
compressive stress for the problem considered in reference 6, the
bending under edge compressive stress of simply supported square
plates with initiel imperfectlions. These curves were in excellent
agreement with the numerical results of reference 6 which pre obtained
from an approxlimate but accurate solution of the Von Kelrmén large-
deflection equations for initially imperfect plates. The agreement
was found to exist for all cases in which the initial imperfection
was a helf-gine-wave deflection in both directions.
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Equal uniform
heat sinks

Uniform heat

Figure 1l.- Thermal-buckling problem treated in present paper.

Figure 2.- Tentlike temperature distribution.
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Ox

T

Figure 3.- Assumed variation of primary normal stress Ox.

Figure 4.- Small-deflection buckle pattern In one quadrant of a plate of
_ asgpect ratio 1.57.
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Figure 5.- Location of dial gages and thermocouples on test panel,
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Figure 6.~ Compasrison of calculated and experimental deflections at
plate center.
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Figure T.- Growth of deflections with temperature.
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